

High Gradient Operations with 9mA Beam Loading

analyzing FLASH data from Sept. 09 test

Julien Branlard, Gustavo Cancelo, Brian Chase

Outline

- Simulation tool
 - Model
 - Validation (comparison with experimental data)
- Review Sept. 2009 test
 - High beam data from DAQ
 - Tilts at high gradient
 - Avoid quenches by lowering gradients
- Moving forward
 - Suggested studies
 - Further simulation work
- What does this mean for ILC/XFEL?
 - How critical is LFD ?
 - What (motorized) knobs ?

Simulation Model

Standard RLC cavity model:

Solving the RLC electrical model of a cavity \rightarrow 2nd order differential equation

$$\ddot{\mathbf{V}}(t) + \frac{\omega_0}{Q_L}\dot{\mathbf{V}}(t) + \omega_0^2\mathbf{V}(t) = \frac{\omega_0 R_L}{Q_L}\dot{\mathbf{I}}(t)$$

1st order solution to the equation above:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\begin{array}{c} V_r \\ V_i \end{array} \right) = \left(\begin{array}{cc} -\omega_{1/2} & -\Delta\omega \\ \Delta\omega & -\omega_{1/2} \end{array} \right) \cdot \left(\begin{array}{c} V_r \\ V_i \end{array} \right) \; + \; \left(\begin{array}{cc} R_L\omega_{1/2} & 0 \\ 0 & R_L\omega_{1/2} \end{array} \right) \cdot \left(\begin{array}{c} I_r \\ I_i \end{array} \right)$$

* "Vector Sum Control of Pulsed Accelerating Fields in Lorentz Force Detuned Superconducting Cavities", T. Schilcher PhD Thesis, 1998

Waveguide distribution for klystron #4 (status 06.08.07)

ACC4	21.8	MV/m		181	MeV		Max	191	Mev	Δ	10		
5				017					0.0	10.4.10.0	00	_ A	CC4
Pin, MW	1.51		RF power	OK			S	etup t	rom 08	/24/20	09	cavities	
	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0				_ h	21/0
Qext A dB	3.0 9.5		3.0 9.5	3.0	3.0 9.5	3.0	3.0 9.5	3.0 9.5				_ n	ave
A, dB A (klystron)	9.5 15.1	9.5 15.1	15.1	9.5 15.1	9.5 15.1	9.5 15.1	9.5 15.1	9.5 15.1	not measured			mot	orized
A (kiysiioii) ⊇cav, kW	169.7			169.7	169.7	169.7	169.7	169.7		1357.9	155	3-stub	
Ecav, Kvv Ecav, MV/m	21.85			21.85	21.85	21.85	21.85	21.85			MV/m	3-	stub
l match	7.30		7.30	7.30		7.30	7.30			21.0	101 07111		
	23	23	23	23	23	23	23	23		23.0			
Ecav, max	Cav 1	Cav 2	Cav 3	Cav 4	Cav 5	Cav 6	23 Cav 7	Cav 8		23.0			
 Δφ	not measure		Cara	Ca1 4	Caro	Caro	Cav /	Caro		beam - forv	vard RF		
ΔΨ	noi measare									Deam - TOTY	varu / \/		
ACC5	22.6 MV/m		187		MeV		Max	231	Mev	Δ	44		
Di- NADA (4.04		DE	OL								ACC5	cavities
Pin, MW	1.61		RF power	OK								h	ave
Qext	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0					
A, dB	9.67	9.64	9.61	9.53	9.34	9.35	9.38	9.39	measured			moto	rized 3
A (klystron)	14.87	14.84	14.81	14.73	14.54	14.55	14.58	14.59				stub	tuners
Pcav, kW	173.5		175.9	179.2		186.8	185.5	185.1		1447.8	160		
Ecav, MV/m	22.09	22.17	22.24	22.45	22.95	22.92	22.84	22.81			MV/m		
l match	7.38	7.40	7.43	7.50	7.66	7.65	7.63	7.62					
Ecav, max	29	27	28	28	29	28	28	26		27.9			
	Cav 1	Cav 2	Cav 3	Cav 4	Cav 5	Cav 6	Cav 7	Cav 8					
Δφ	0	-6	11	1	15	6	6	20		beam - forv	vard RF		
ACC6	26.5 MV/m			220	MeV		Max	238	Mev	Δ	18	ACC6 cavitie	
Pin, MW	2.18		RF power	OK								h	ave
-111, 1919 9	2.10		Ki powei	ON									
Qext	2.95	2.97	3.00	2.98	3.00	2.98	2.99	2.98	11/21/2007			mot	orized
4, dB	7.85			8.31			10.28					coup	lers and
A, (klystron)	11.65			12.11	16.07	15.83	14.08	14.17					
Pcav, kW	357.6			321.6		136.6	204.3			2066.5	113	pnase	shifte
Ecav, MV/m	31.82			30.12		19.62	23.99	23.76			MV/m		
match	10.81	+	10.22	10.13	6.37	6.60	8.04	7.99				8.91	
Ecav, max	34			32		21	29	26		28.6			5
	Cav 1	Cav 2	Cav 3	Cav 4	Cav 5	Cav 6	Cav 7	Cav 8					
Δφ	0	0	0	0	0	0	0	0		beam - forv	vard RF		

FLASH data from Aug. 27th 2009, 2:20 am

Review of Sept. 09 studies

(beam loading on high gradient cavities)

- Validated simulator (without beam)
 - Tuned to match FLASH ACC4, ACC5, and ACC6, according to setup from 08/24/2009 (Q_I's, P_K's)
 - Verified cavity gradients against experimental data
- Simulator predicts cavity quench for 9mA current for high gradient cavities
 - During Sept. test, gradient was lowered to prevent quenching
- Based on simulations, a solution is proposed to operate at higher gradient while preventing high gradient cavities to quench
 - Redistributing power among ACC4 and ACC56 (hybrid)
 - Adjusting QL for cavities 1-4 in ACC6 (not flat with zero beam)
 - The adjustments were tested without beam (Aug. 26 remote study) but not with beam

With Aug. 24th 2009 FLASH settings

With Aug. 24th 2009 FLASH settings

FLASH data from Sept. 21st 2009, 2:50 am

FLASH data from Sept. 21st 2009, 2:50 am

Proposed Studies

Moving forward

- Proposed studies
 - Rerun analysis with new RF distribution configuration for ACC4,
 5, 6 and 7
 - Machine Test
- Study impact of cavity detuning
 - Roll over in gradient at the end of pulse
- Questions
 - $-20 \text{ MV/m} \rightarrow 31.5 \text{ MV/m}$
 - How critical is LFD ?
 - What automatic knobs do we really need?

Thank you!

Backup slides

1^{st} approach: individual Q_L , individual P_K

(optimized for max beam)

$$\frac{V}{V_0} = \frac{Q_L}{Q_{L0}} \left(2^{\frac{Q_{L0}}{Q_L}} - 1 \right)$$

$$\frac{P_k}{P_{k0}} = \frac{Q_L}{Q_{L0}} 4^{\left(\frac{Q_{L0}}{Q_L} - 1\right)}$$

Optimized for flat individual gradient under maximum beam current

REFERENCE:

"RF distribution optimization in the main linac of the ILC" K.Bane, C.Adolphsen, C.Nantista (PAC07)

2^{nd} approach: same Q_L individual P_K (optimized for no beam)

Same Q_i for all cavities ($Q_i = 3 \times 10^6$)

ACC6: [30.48 31.59 29.41 28.91 18.32 18.84 23.04 22.80] MV/m lbo = 5 mA. beam pulse = 0.65 ms

Adjust power to set cavities at maximum gradient without beam

REFERENCE:

"XFEL waveguide distribution and more", V. Katalev, XFEL HLRF kick off meeting, 2007

"Optimized": same Q_L , individual P_K

(optimized for any beam current)

REFERENCE:

"Operational Solution to Obtaining a Flat Vector Sum from Multiple Cavities with Gradient Disparities", J. Branlard, B. Chase, FNAL ILC DB doc # 4890

Problem Statement

3 knobs: - LLRF

- cavity coupler

- waveguide power coupler

Example 1: FLASH 9mA test at DESY

"no-beam" study - 8/27/2009

Simulator mimics power distribution & coupling for ACC4, 5 and 6

Verification of simulated cavity gradients vs. experimental data without beam

Using simulator, predict behavior with 9 mA beam current

Using simulator, propose tuning scheme to avoid quench of "high-gradient" cavities

Implement scheme and verify cavity tilts

cavities with adjusted

tilt up without beam → flat with beam₂₁

Example 1: FLASH 9mA test at DESY

"high beam" study - 9/21/2009

Verification of model against experimental data with 9mA beam

Could not implement optimized scheme with beam

→ lowered klystron power for safe operation

Validate simulator as useful tool for next test

